Kinetics of urease mediated calcite precipitation and permeability reduction of porous media evidenced by magnetic resonance imaging

نویسندگان

  • S. Handley-Sidhu
  • E. Sham
  • M. O. Cuthbert
  • M. L. Johns
  • J. C. Renshaw
چکیده

The enzyme urease drives the hydrolysis of urea leading to the release of ammonium ions and bicarbonate; in the presence of calcium, the rise in pH leads to increased calcium carbonate saturation and the subsequent precipitation of calcite. Although such alkalinizing ureolysis is widespread in nature, most studies have focussed on bacteria (i.e. indigenous communities or urease-active Sporosarcina pasteurii) for calcite precipitation technologies. In this study, urease-active jack bean meal (from the legume Canavalia ensiformis) was used to drive calcite precipitation. The rates of ureolysis (kurea), determined from measured NH4 , enabled a direct comparison to microbial ureolysis rates reported in literature. It is also demonstrated that a simple single reaction model approach can simulate calcite precipitation very effectively (3–6 % normalised root-mean-square deviation). To investigate the reduction of permeability in porous media, jack bean meal (0.5 g L) and solutions (400 mM urea and CaCl2) were simultaneously pumped into a borosilicate bead column. One-dimensional magnetic resonance profiling techniques were used, non-invasively, for the first time to quantify the porosity changes following calcite precipitation. In addition, two-dimensional slice selective magnetic resonance images (resolution of *0.5 9 1.0 mm) revealed that the exact location of calcite deposition was within the first 10 mm of the column. Column sacrifice and acid digestion also confirmed that 91.5 % of calcite was located within the first 14 mm of the column. These results have important implications for the design of future calcite precipitation technologies and present a possible alternative to the well known bacterial approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation

The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified b...

متن کامل

Bio-grout based on microbially induced sand solidification by means of asparaginase activity

Bio-grout, a new ground improvement method, has been recently developed to improve the mechanical properties, decrease the permeability of porous materials, reinforce or repair cementitious materials and modify the properties of soil or sand. Bio-grout production depends on microbially induced calcite precipitation (MICP), which is driven mainly by an enzyme, urease. However, urease-based MICP ...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

Urease activity in microbiologically-induced calcite precipitation.

The role of microbial urease in calcite precipitation was studied utilizing a recombinant Escherichia coli HB101 containing a plasmid, pBU11, that encodes Bacillus pasteurii urease. The calcite precipitation by E. coli HB101 (pBU11) was significant although its precipitation level was not as high as that by B. pasteurii. Addition of low concentrations (5-100 microM) of nickel, the cofactor of u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013